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We perform detailed comparison of the experimental data of the experiment on the determination of the
Casimir pressure between two parallel Au plates with the theoretical values computed using the Lifshitz
formula at zero temperature. Computations are done using the optical data for the complex index of refraction
of Au extrapolated to low frequencies by means of the Drude model with both most often used and other
suggested Drude parameters. It is shown that the experimental data exclude the Lifshitz formula at zero
temperature at a 70% confidence level if the Drude model with most often used values of the parameters is
employed. If other values of the Drude parameters are used, the Lifshitz formula at zero frequency is experi-
mentally excluded at a 95% confidence level. The Lifshitz formula at zero temperature combined with the
generalized plasmalike model with most often used value of the plasma frequency is shown to be experimen-
tally consistent. We propose a decisive experiment which will shed additional light on the role of relaxation
properties of conduction electrons in the Casimir effect.
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I. INTRODUCTION

There is an increasing interest in the Casimir effect1 in the
recent literature connected with numerous multidisciplinary
applications in both fundamental and applied science �see
monograph2 for a modern overview of the subject�. The Ca-
simir force acting between two closely spaced uncharged
material bodies is connected with the existence of zero-point
and thermal fluctuations of the electromagnetic field. Keep-
ing in mind that in some sense, the vacuum is the most
fundamental quantum state, the role of the Casimir force in
many diverse areas ranging from elementary particles and
gravitation to atomic physics, condensed-matter physics and
nanotechnology becomes clear. Over a long period of time,
the experimental investigation of the Casimir effect has pro-
gressed only slowly because the related forces and energies
are very small and their observation requires special condi-
tions which are hard to achieve. During the last 12 years,
however, about 25 experiments measuring the Casimir force
have been performed using different possibilities suggested
by modern laboratory techniques �the review3 describes all
recent experiments and related theory�.

It is well known that the most fundamental theoretical
description of the van der Waals and Casimir forces acting
between two material bodies is given by the Lifshitz
theory4–6 �recall that in this case the Casimir force is nothing
but the retarded van der Waals force�. The Lifshitz theory
was originally formulated for two semispaces separated by a
gap. Recently far-reaching generalizations of the Lifshitz
theory have been proposed allowing calculation of the Ca-
simir force between arbitrarily shaped bodies �see, for in-
stance, Refs. 2 and 7–15�. In the Lifshitz theory and its gen-
eralizations the Casimir energy and force are expressed in
terms of reflection amplitudes describing reflection of the
electromagnetic oscillations on the boundary surfaces. If the
spatial dispersion of material bodies can be neglected, the

reflection amplitudes in turn are expressed using the dielec-
tric permittivity depending on the frequency �. This is in fact
the basic quantity in the Lifshitz theory which should be
known to calculate the Casimir energy �free energy� and the
Casimir force.

The comparison of the experimental data with the Lifshitz
theory at nonzero temperature has revealed a puzzle which
remains unresolved to the present day.3 Some authors16–18

�see complete set of references in review3� consider most
natural the suggestion to substitute in the Lifshitz formula
the full dielectric permittivity taking into account all physical
processes really occurring at the corresponding frequencies.
This leads to the use of dielectric permittivity containing the
first-order pole at �=0 due to the role of conduction elec-
trons. The respective behavior of the dielectric permittivity at
low frequencies is usually described by the Drude model.
However, the experimental data of several experiments per-
formed at nonzero temperature with metallic,19–22

semiconductor,23,24 and dielectric25,26 test bodies are incon-
sistent with the theoretical predictions of the Lifshitz theory
obtained using this suggestion. Different attempts on how to
resolve the puzzle of the thermal Casimir force, including the
question of reliability of the data, were discussed27 �see also
in Secs. II and III below�.

The use of the Lifshitz formula at zero temperature T=0
is one of the widespread approaches to the comparison of
measurement data with theory in Casimir physics.28–31 This
is usually justified by stating that at small separations be-
tween the test bodies the corrections to the Casimir force due
to nonzero temperature are insignificant. It should be noted
that the role of nonzero temperature in the Lifshitz formula is
twofold: in the discreteness of the imaginary frequencies at
T�0 and in the explicit dependence of the dielectric permit-
tivity on T. What is commonly referred to as “the Lifshitz
formula at zero temperature,” takes into account only the
first factor. This means that the integration with respect to a
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continuous frequency is performed instead of summation
over the discrete Matsubara frequencies. In so doing the sec-
ond factor is disregarded, i.e., the dielectric permittivity, as
measured at room temperature, is preserved. The “hybrid”
character of such kind of “zero-temperature” formula was
investigated.32 Specifically, it was shown that respective
zero-temperature Casimir energy, even at short separations,
can deviate from the Casimir free energy computed at room
temperature by several percents. Nevertheless it is rather
common to believe33 that the Lifshitz formula at zero tem-
perature “gives a dominant contribution at small separations
��1 �m at room temperature� between the bodies and was
readily confirmed experimentally with good accuracy….”

In this paper, we perform the detailed comparison of the
experimental data on an indirect measurement of the Casimir
pressure between two parallel plates21,22 with the Lifshitz
formula for the Casimir pressure at zero temperature. This
comparison is performed using the tabulated34 optical data
for Au extrapolated to low frequencies by means of the
Drude model with most often used Drude parameters35 and
with other Drude parameters, as suggested, e.g., in Ref. 36.
Our comparison shows that the experimental data exclude
the Lifshitz formula at zero temperature, which uses the
tabulated optical data extrapolated to low frequencies with
the help of most often used Drude parameters, at a 70%
confidence level over a wide separation region. The zero-
temperature Lifshitz formula using other Drude parameters is
excluded by the data at a 95% confidence level. According to
our results, if the experiment is performed at room tempera-
ture, the Lifshitz formula also at room temperature should be
used to make a comparison between the data and the theory.
We discuss a recent suggestion37 on how to avoid the use of
ad hoc extrapolations of the optical data outside the fre-
quency region where they were measured. This suggestion is
based on some properties of analytic functions but meets
difficulties in practical realization. We also consider the Lif-
shitz formula at zero temperature using the generalized plas-
malike model,2,3,38 which disregards relaxation properties of
conduction electrons, and compare the computational results
with the same experimental data. It was shown that in this
case, the data are consistent with the theory employing the
most often used value of the plasma frequency. This is ex-
plained by the fact that the generalized plasmalike model at
separations below 1 �m leads to approximately the same
results irrespective of whether the Lifshitz formula at zero or
nonzero temperature is used. We also propose a distinct ex-
periment which can shed additional light on the role of re-
laxation properties of conduction electrons in the Casimir
effect.

The paper is organized as follows. In Sec. II, we compare
the experimental data21,22 with the zero-temperature Lifshitz
formula which utilizes the extrapolation of the optical data
by the Drude model with most often used parameters. In Sec.
III, the same data are compared with the same formula but
with other Drude parameters. The possibility on how to de-
termine the dielectric permittivity along the imaginary fre-
quency axis using only the measured optical data is dis-
cussed in Sec. IV. Section V is devoted to the comparison of
the experimental data with the Lifshitz formula at zero tem-
perature combined with the generalized plasmalike model. In

Sec. VI, the reader will find our conclusions and discussion
including the proposal of distinct decisive experiment.

II. COMPARISON OF THE EXPERIMENTAL DATA WITH
THEORY USING CONVENTIONAL EXTRAPOLATION

OF THE OPTICAL DATA BY THE DRUDE
MODEL

Here and below we use the experimental data of the ex-
periment on an indirect measurement of the Casimir pressure
between two parallel plates by means of micromachined
oscillator.21,22 This experiment used the configuration of a
Au-coated sphere of 150 �m radius above a Au-coated plate
that could rotate about the rotation axis. During the measure-
ments, the separation between the sphere and the plate was
varied harmonically at the resonant frequency of the oscilla-
tor. The immediately measured quantity was the shift in this
frequency due to the Casimir force acting between the sphere
and the plate. Using the proximity force approximation,2,3,39

the shift of the resonant frequency of the oscillator was re-
calculated into the equivalent Casimir pressure in the con-
figuration of two parallel plates made of Au. The pressure
was determined as a function of separation over the separa-
tion region from 160 to 750 nm. The absolute error in the
measurement of separation distances a was determined to be
�a=0.6 nm at a 95% confidence level. The absolute error in
the determination of the Casimir pressure was also deter-
mined at a 95% confidence level and found to be separation
dependent. The respective relative error increases from ap-
proximately 0.2% at a=160 nm to 9% at a=750 nm. It was
shown that in this experiment the total experimental error is
completely determined by the systematic error leaving the
random error negligibly small, as it should be in precise ex-
periments of metrological quality �details of the measure-
ments, calculations, and error analysis can be found in Refs.
2, 3, 21, and 22�.

According to our aim, the theoretical Casimir pressure
between smooth parallel plates is computed using the Lif-
shitz formula at zero temperature,

P�a� = −
�

2�2�
0

�

d	�
0

�

k�dk�q�


� e2aq

r

2�i	,k��

− 1�−1

.

�1�

Here, �= i	, k� is the projection of the wave vector onto the
plane of the plates, 
 denotes the transverse magnetic and
transverse electric polarizations of the electromagnetic field,
and q= �k�

2 +	2 /c2�1/2. The respective reflection coefficients
are

rTM�i	,k�� =
��i	�q − k

��i	�q + k
,

rTE�i	,k�� =
q − k

q + k
, �2�

where k= �k�
2 +��i	�	2 /c2�1/2 and ��i	� is the dielectric per-

mittivity of the material calculated along the imaginary fre-
quency axis.

GEYER, KLIMCHITSKAYA, AND MOSTEPANENKO PHYSICAL REVIEW B 81, 245421 �2010�

245421-2



We have performed computations by Eqs. �1� and �2�
within the experimental separation region from 160 to 750
nm. The dielectric permittivity of Au along the imaginary
frequency axis was found by means of the Kramers-Kronig
relation2 which assumes that ���� is regular or has a first-
order pole at �=0,

��i	� = 1 +
2

�
�

0

� � Im ����
	2 + �2 d� . �3�

This was done using the tabulated optical data34 for the
imaginary part of the dielectric permittivity, Im ����, mea-
sured in the frequency region from 0.125 to 104 eV and
extrapolated to lower frequencies by means of the Drude
model,

��i	� = 1 +
�p

2

	�	 + ��
. �4�

The values of the plasma frequency �p and relaxation param-
eter � were determined22 from the measurements of resistiv-
ity of the used Au films as a function of temperature. These
values ��p=8.9 eV and �=0.0357 eV� are very close to the
values34,35 �p=9.0 eV and �=0.035 eV most often used in
numerous calculations of the Casimir force between Au sur-
faces made by different authors �see review2,3�. It was not
needed to use any extrapolation of the optical data to higher
frequencies.

The influence of surface roughness was taken into account
in a nonmultiplicative way using the method of geometrical
averaging.2,3,20,22 According to this method, the theoretical
Casimir pressures between the rough plates were calculated
as

Ptheor�a� = �
i=1

Np

�
j=1

Ns

v j
�s�vi

�p�P�a + Hs + Hp − hj
�s� − hi

�p�� . �5�

Here, the surface topography of the plate �sphere� is approxi-
mately characterized by Np �Ns� pairs �vi

�p� ,hi
�p�� ��v j

�s� ,hj
�s���,

where vi
�p� �v j

�s�� is the fraction of the surface area with height
hi

�p� �hj
�s��. These data obtained20 from atomic force micro-

scope scans allow one to determine the zero-roughness levels
Hp �Hs� relative to which the mean values of roughness pro-
files are equal to zero,

�
i=1

Np

�Hp − hi
�p��vi

�p� = 0, �
j=1

Ns

�Hs − hj
�s��v j

�s� = 0. �6�

Now we compare the computational results for the Casimir
pressure at zero temperature, Ptheor�a�, with the experimental
data.22 In Fig. 1�a�, the computational results at separations
from 350 to 400 nm are shown as bands in between the two
solid lines. The width of a theoretical band is determined by
the total theoretical error of about 0.5% found at a 95%
confidence level.20 This includes errors due to uncertainty of
the optical data,34 contribution of patch potentials, and
diffraction-type contribution to the effect of surface rough-
ness which is not taken into account by the method of geo-
metrical averaging �see details20�. The contribution of patch
potentials due to grains of polycrystal Au films was

estimated.20 At the shortest separation a=160 nm, it was
shown to be only 0.037% of the Casimir pressure and further
decreases with increasing a. The diffraction-type contribu-
tion to the effect of surface roughness is less20 than 0.04% at
a=300 nm. Although it increases with increasing a, the total
effect of surface roughness becomes negligibly small20 at a

300 nm. The mean experimental Casimir pressures,

P̄expt�a�, are shown as crosses whose arms are also deter-
mined at a 95% confidence level. All details on the measure-
ment procedures used for measuring both the pressures and
absolute separations and determination of experimental er-
rors are presented.20–22 Specifically, the total experimental
error of pressure measurements �which is mostly determined
by the systematic error� includes the error due to use of the
proximity force approximation to convert the data for the
frequency shift into the data for the Casimir pressure. As can
be seen in Fig. 1�a�, all experimental crosses lie outside of
the theoretical bands but some of the arms of the crosses
touch the border lines of these bands. Thus, in the strict sense
one cannot claim that the theoretical description using the
Lifshitz formula at zero temperature combined with the
Drude model is excluded by the data at a 95% confidence
level.
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FIG. 1. Experimental data for the Casimir pressure �crosses� as
a function of separation and the theoretical band between the two
solid lines computed employing the Lifshitz formula at T=0 and the
Drude extrapolation of the optical data with most often used param-
eters. The arms of the crosses and the widths of the bands are
determined at �a� 95% confidence level and �b� 70% confidence
level.
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Let us now perform the comparison of the experimental
data with the zero-temperature theoretical results at a lower,
70%, confidence level. For this purpose, we assume that both
the theoretical and experimental errors are random quantities
distributed uniformly �other hypothesis would lead to smaller
errors at a 70% confidence level so that our approach is the
most conservative40�. Now, to obtain the theoretical band and
the arms of the experimental crosses defined at a 70% con-
fidence level, one should divide their widths in Fig. 1�a� by a
factor of 0.95 /0.7=1.357. The resulting comparison of ex-
periment with theory at a 70% confidence level is presented
in Fig. 1�b� within the separation region from 350 to 400 nm.
The same notation as in Fig. 1�a� is used. As can be seen in
Fig. 1�b�, all experimental crosses are outside the theoretical
band confined between the solid lines. This means that the
Lifshitz theory at zero temperature employing the optical
data extrapolated to zero frequency by means of the Drude
model with most often used parameters is excluded by the
data of the experiment21,22 at a 70% confidence level.

The obtained conclusion can be confirmed using another
method for the comparison between experiment and theory
based on the consideration of a confidence interval for the
differences of theoretical and mean experimental Casimir
pressures Ptheor�a�− Pexpt�a� calculated at all experimental
separations �see Refs. 2, 3, 20, 22, and 41�. At a given
confidence level, such intervals �−��a� ,��a�� are different
at different separations. The confidence interval
�−�0.95�a� ,�0.95�a�� was found22 at a 95% confidence level
for the differences between predictions of the room-
temperature Lifshitz theory and the experimental data.21,22 It
was obtained as a combination of the total theoretical and
total experimental errors. Keeping in mind that the total the-
oretical error is almost independent of the temperature and
model of the dielectric permittivity,2,3,20,22 we can use the
same confidence interval for the comparison between the ex-
perimental data and the theoretical results obtained using the
zero-temperature Lifshitz formula.

In Fig. 2, the borders of the confidence intervals
�−�0.95�a� ,�0.95�a�� generate the two solid lines. The differ-
ences between the theoretical Casimir pressures computed
using the zero-temperature Lifshitz formula and the tabulated
optical data extrapolated to zero frequency are indicated as
dots. As can be seen in Fig. 2, within the separation intervals
a�310 nm and a
460 nm all dots are inside the confi-
dence intervals, i.e., the theoretical approach used is formally
consistent with the data. However, within the interval from
310 to 460 nm many dots are on the border of the confidence
intervals or even outside of them. This casts some doubts on
the consistency of the used theoretical approach with the data
and calls for the consideration of confidence intervals at
lower, 70%, confidence level. For this purpose, we have in-
vestigated the distribution law of the random quantity
Ptheor�a�− Pexpt�a� near its mean value over the entire mea-
surement range. We have found that to sufficient accuracy
this distribution is normal. Thus, the desired half width of the
confidence interval at a 70% confidence level can be deter-
mined from the equality �0.95�a� /�0.7�a�=2. The obtained
borders of the confidence intervals �−�0.7�a� ,�0.7�a�� gener-
ate the two dashed lines in Fig. 2. As can be seen in this
figure, over a wide separation region from 230 to 520 nm, all

dots lie outside the confidence intervals. This means that
theoretical approach employing the zero-temperature Lifshitz
formula and extrapolation of the optical data to zero fre-
quency by means of the Drude model with most often used
parameters is experimentally excluded at a 70% confidence
level.

We complete this section with a brief discussion of the
reliability of used experimental results and their comparison
with theory. As often underlined in the literature �see, e.g.,
Ref. 36�, in all performed experiments both the optical data
for metallic films and the values of the Drude parameters
used to extrapolate data to lower frequencies were not mea-
sured but taken from handbook.34 It was shown,42 however,
that the variation of the optical data for Au for different
samples may influence on the Casimir force on the level of
5%. The question arises whether or not this could influence
the validity of the above conclusion that the Lifshitz theory
at T=0 combined with the Drude model is experimentally
excluded. First of all we recall that in the experiment21,22 the
values of the Drude parameters were determined from the
measurement of resistivity of the used films as a function of
T. Recently one more measurement of the Casimir pressure
by means of a micromachined oscillator was performed on a
Au electroplated sample where the optical data were
obtained43 by ellipsometry in the frequency region from 1.50
to 6.25 eV. It was shown that the experimental results for the
Casimir pressure in Refs. 21, 22, and 43 are virtually undis-
tinguishable. The differences between the measured and
tabulated optical data are very small and do not affect the
computational results for the Casimir pressure.43

Another point that could influence the experimental re-
sults is a possible uncertainty in the electrostatic calibrations
used to determine the absolute separation between the test
bodies, sphere radius, and some other parameters. Thus, an
anomalous distance dependence of the electric force acting
between an Au-coated plate and an Au-coated sphere of 30
mm radius was observed.44 The respective contact potential
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FIG. 2. Differences between theoretical and mean experimental
Casimir pressures are indicated as dots. Computations are per-
formed employing the Lifshitz formula at T=0 and the Drude ex-
trapolation of the optical data with most often used parameters.
Solid and dashed lines indicate the borders of 95% and 70% confi-
dence intervals, respectively.
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was found to be dependent on separation. In experiments
using micromachined oscillator, the standard force-distance
dependence was observed and the contact potential was mea-
sured to be constant.20–22,45,46 The observed anomalous dis-
tance dependence44 might be explained45 by deviations of the
mechanically polished and ground surface from a perfect
spherical shape for lenses of centimeter-size radius. Recently
the same conclusion has been made47 for cylindrical surfaces
of large radii. Notice that unexpected features of the electro-
static calibrations in the measurements of the Casimir force
between metal bodies were also reported by some other
authors.48,49 We emphasize, however, that in all these cases
either spheres of centimeter-size radius have been used or the
experiments were performed in an ambient environment
�here we do not discuss the case of semiconductor test bodies
where the effect of space-charge layer should be taken into
account at short separations2,3�.

The authors44,49 relate the anomalies in electrostatic cali-
brations observed in their experiments with large spherical
lenses to possible influence of patch potentials. According to
Ref. 49, for small patches with effective area Sp�Seff
=2�Ra, where R is the sphere �lens� radius, the additional
electric force arising due to the existence of patches expo-
nentially vanishes with the increase in separation. In the op-
posite case of large patches satisfying the condition Sp

Seff, the possibility of large additional electric force
arises.49 The respective potential which minimizes the total
electric force acting between a sphere of centimeter-size ra-
dius and a plate after some voltage is applied, becomes sepa-
ration dependent. As was mentioned above, in the
experiments20–22 the contact potential does not depend on
separation. The investigation of the surfaces of a sphere and
a plate by means of an atomic force microscope20 demon-
strated that the maximum diameter of grains is equal to D
=300 nm. We emphasize that in the experiments,20–22 the
contact potential does not depend on separation and, thus,
patches are caused solely by the grain structure of the sphere
and plate surfaces which are spherical and plain, respec-
tively, otherwise. Taking into account that for the sphere used
in the experiment21,22 it holds,

Sp =
�D2

4
= 0.07 �m2 � 2�Ra = 150.72 �m2, �7�

one arrives at the conclusion that only the small patches
might be of relevance to the experiments20–22 �we substituted
the shortest separation a=160 nm in this estimation�. The
influence of just such patches was analyzed20 on the basis of
the theory developed50 and confirmed49 recently, and their
role was shown to be negligibly small.

III. EXTRAPOLATIONS OF THE OPTICAL DATA BY THE
DRUDE MODEL WITH ALTERNATIVE PARAMETERS

Here, we compare the theoretical predictions of the Lif-
shitz formula at zero temperature using the Drude model
with other suggested parameters with the experimental
data.21,22 The other Drude parameters were obtained for Au
films of different thicknesses deposited on different sub-
strates, unannealed or annealed after the deposition.36 The

optical properties of these films were measured ellipsometri-
cally within the frequency region from 0.0376 to 0.653 eV
and from 0.729 to 8.856 eV. Note that the lowest frequency
of the first interval is a factor of 3.3 smaller than the mini-
mum frequency where optical data are available in
handbook.34 For the determination of the Drude parameters
�p and �, the joint fit of both real and imaginary parts of the
dielectric permittivity or the complex index of refraction to
the optical data was performed in the low-frequency range.
The consistency of the obtained complex dielectric permit-
tivity with the Kramers-Kronig relations was verified.36 This
had led to different sets of the mean Drude parameters for
five different samples of Au films varying from �p

�1�

= �6.82�0.08� eV, ��1�= �40.4�2.1� meV for the first
sample to �p

�5�= �8.38�0.08� eV, ��5�= �37.1�1.9� meV
for the fifth sample.

Below we perform computations of the Casimir pressure
at zero temperature using Eq. �1� and the extrapolation of the
optical data to the low frequencies by the Drude model with
the plasma frequency varying from �p,min

�1� =6.74 eV to
�p,max

�5� =8.46 eV. In so doing the dielectric permittivity along
the imaginary frequency is found from Eq. �3�. In the fre-
quency region above 0.125 eV, we continue using the optical
data for the imaginary part of dielectric permittivity from
handbook.34 This is justified as follows. In the frequency
region from 2 to 6 eV containing the first two absorption
bands of Au, the optical data for Im ���� measured36 differ
from that in handbook.34 Specifically, for sample N2 �N3� the
maximum of the first absorption band is a factor of 0.69
�0.85� of the respective handbook maximum.34 The maxi-
mum of the second absorption band for sample N2 �N3� is
less than the maximum of the second absorption band34 by a
factor of 0.64 �0.8�. This can be seen in Fig. 4 of Ref. 36.
However, when the optical data36 in the region of a few
electron volt are replaced with the data of handbook,34 this
results in a negligibly small variation on the Casimir pres-
sure. For sample N2, the magnitude of the Casimir pressure
at separations 160 and 200 nm is increased by 0.7% and
0.5%, respectively. Similarly, for sample N3, increases of
0.3% and 0.2% in the magnitude of the Casimir pressure are
obtained at 160 nm and 200 nm, respectively, when data36

are replaced by those from handbook.34 Thus, we can use the
optical data34 for the first absorption bands in our computa-
tions. Moreover, the use of the optical data36 instead of the
handbook data34 would decrease the magnitude of the theo-
retical Casimir pressure and, thus, only increase discrepan-
cies between the predicted and experimental Casimir pres-
sures �see Fig. 1�. Note also that the optical data measured in
Ref. 43 are in very good agreement with the handbook data34

�only 0.05% and 0.03% difference of the Casimir pressure at
separations of 160 nm and 200 nm, respectively�.

The computational results for the Casimir pressure �Eq.
�1�� are presented in Fig. 3 as a band enclosed in between
two solid lines in separation regions �a� from 300 to 350 nm
and �b� from 350 to 400 nm. The upper solid lines in figures
�a� and �b� are computed with the help of extrapolation of the
optical data by the Drude model with the alternative param-
eters ��p,min

�1� ,��1��. The lower solid lines in figures �a� and �b�
are computed with the parameters ��p,max

�5� ,��5��. The obtained
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upper �lower� lines are shifted upward �downward� by 0.5%
to take into account the theoretical error discussed in Sec. II.
The computational results for the samples36 N2, N3, and N4
are sandwiched between these solid lines. �Note that the
value of the relaxation parameter � only slightly influences
the computational results for the Casimir pressure; for ex-
ample, a shift in the value of ��1� by 5% leads to a shift in the
value of the Casimir pressure varying from 0.07% to 0.1%
when separation varies from 160 to 750 nm.� In the same
figure, the experimental data are shown as crosses which
arms are drawn at a 95% confidence level. As can be seen in
Fig. 3, the Lifshitz formula at zero temperature using the
Drude model with other suggested parameters for the ex-
trapolation of the optical data to lower frequencies is ex-
cluded by the experimental data21,22 at a 95% confidence
level.

The same conclusion is obtained if one uses the compari-
son between experiment and theory in terms of the differ-
ences of calculated and measured Casimir pressures as de-
scribed in Sec. II. In Fig. 4�a�, the upper dots show the

differences Ptheor�ai�− P̄expt�ai�, where the values Ptheor�ai�
are computed as described above using the extrapolation of
the optical data by the Drude model with the parameters

��p,min
�1� ,��1��. The lower dots use the Drude extrapolation

with the parameters ��p,max
�5� ,��5��. The dots related to all

other samples are sandwiched between these two sets pre-
sented in Fig. 4�a�. The solid lines show the borders of the
confidence interval �−�0.95�a� ,�0.95�a�� determined at a
95% confidence level. As can be seen in Fig. 4�a�, the zero-
temperature Lifshitz formula using the optical data and the
Drude model with other suggested parameters is experimen-
tally excluded at a 95% confidence level over a wide range
of separations from 160 to 520 nm. In Fig. 4�b�, the same
two sets of differences between the computed and mean
measured Casimir pressures are shown over a narrower sepa-
ration region from 500 to 750 nm. Here, in addition to the
solid line indicating the borders of a 95% confidence inter-
val, the dashed lines indicate the confidence intervals deter-
mined at a 70% confidence level. As can be concluded from
Fig. 4�b�, at a 70% confidence level the zero-temperature
Lifshitz formula using the optical data and other suggested
Drude parameters is experimentally excluded over an even
wider separation range from 160 to 620 nm.
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FIG. 3. Experimental data for the Casimir pressure �crosses�
determined at a 95% confidence level and the theoretical band be-
tween the two solid lines computed employing the Lifshitz formula
at T=0 and the Drude extrapolation of the optical data with differ-
ent sets of parameters for separations �a� from 300 to 350 nm and
�b� from 350 to 400 nm. The widths of the bands are determined at
a 95% confidence level.
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FIG. 4. Differences between theoretical and mean experimental
Casimir pressures are indicated as dots. Computations are per-
formed using the Lifshitz formula at T=0 and the Drude extrapola-
tion of the optical data with different sets of parameters �the upper
and lower sets of dots correspond to smaller and larger plasma
frequency, respectively� for separations �a� from 160 to 750 nm and
�b� from 500 to 750 nm. Solid and dashed lines indicate the borders
of 95% and 70% confidence intervals, respectively.
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IV. SUGGESTION TO USE A WINDOW FUNCTION

As it is seen from the above, the use of other suggested
Drude parameters in the extrapolation of the optical data to
lower frequencies leads to drastically different theoretical
predictions for the Casimir pressure. An interesting sugges-
tion on how to determine ��i	� using nothing but the optical
data in the frequency region where they are available was
proposed.37 If this were possible, one could avoid using any
extrapolation of the optical data either to low or high fre-
quencies and remain on the solid grounds of the measured
data. This suggestion is based on the possibility to introduce
a function f��� which is analytic in the upper half plane
�with possible exclusion of the origin �=0�, which modulus
increases not faster than 	�	 when 	�	→�, and which sup-
presses the contribution of frequencies where the optical data
are not measured. It is also assumed that f�−���= f����.
Then, under the assumption that ���� is regular or has at
most a first-order pole at �=0, the Kramers-Kronig relation
takes the form

��i	� = 1 +
2

�f�i	��0

� �d�

�2 + 	2 
Im f����Re ���� − 1�

+ Re f���Im ����� . �8�

This generalized Kramers-Kronig relation is obtained from
Eq. �3� by replacing ����−1 with f��������−1�. It is valid
for any 	 such that f�i	��0. For f����1, Eq. �8� coincides
with the standard Eq. �3�. Function f�z� was called a window
function.37 The following family of window functions was
suggested37 which could suppress the contribution of fre-
quencies outside the region where the optical data are mea-
sured,

f��� = �2p+1� 1

�� − ��2q+1 +
1

�� + ���2q+1� . �9�

Here, � is an arbitrary complex number with Im ��0 and
p�q are integers. As noted,37 by taking sufficiently large
values of p, one can suppress the contribution of low fre-
quencies in the integral in Eq. �8�, where the optical data are
not readily measured, to any desired level.

As an example, the analytical expression for the dielectric
permittivity of Au along the real frequency axis was
considered,37

���� = 1 −
�p

2

��� + i��
+ �

j=1

6
gj

� j
2 − �2 − i� j�

, �10�

where the values of the oscillator strengths gj, oscillator fre-
quencies � j, and relaxation parameters � j were determined22

from the fit of Im ���� to the tabulated optical data.34 Then
the values of Re ���� and Im ���� from Eq. �10� in some
restricted frequency region �wider than in Ref. 34� were sub-
stituted into Eq. �8� with the function f��� defined in Eq. �9�,
�= �1–2i� eV, p=1, and q=2 and 3. It was found that the
obtained ��i	� is in good agreement with ��i	� computed
directly from Eq. �10� in the frequency region from 0.16 to
9.7 eV.

We have attempted to apply Eqs. �8� and �9� to the imme-
diate optical data34 using the values p=1 and q=3 �for this
case the best agreement was achieved in Ref. 37�. As a result,
for 	 from 2.44 to 2.92 eV negative values of ��i	� were
obtained. This could be explained by the proximity of the
root of f�i	� at 	0
2.4 eV. However, in the frequency re-
gion of 	
3 eV, the obtained values of ��i	� differ dramati-
cally from the values obtained employing the extrapolation
of the optical data34 by the Drude model either with most
often used or with other suggested parameters. Moreover, for
	
7.8 eV �i.e., in the region with no roots of f�i	�� ��i	�
once again becomes negative. One may guess that these
anomalies are explained by the fact that the tabulated optical
data34 are collected from several different experiments. How-
ever, in our opinion, the reason for obtaining such results in
application of Eq. �8� to real measured data is the following.
Unlike the standard Kramers-Kronig relation �3�, which uses
only Im ����, Eq. �8� expresses ��i	� through both Im ����
and Re ����. It should be realized that the quantity
Re ����=n2−k2 �where n and k are the real and imaginary
parts of the complex index of refraction� is determined with
much larger error than Im ����=2nk �especially in the fre-
quency regions where n
k�. Because of this, it is preferable
to use Eq. �3� rather than Eq. �8� when we deal with experi-
mental optical data. In this regard, we stress that the analyti-
cal Eq. �10� is in very good agreement with the optical data34

for Im ����. It does not reproduce, however, the optical data
for Re ����. When we have the analytic representation for
���� �such as Eq. �10� considered in Ref. 37� there is a
possibility to select �, p and q in order to have good agree-
ment between ��i	� computed from Eq. �8� and directly from
Eq. �10�. If, however, we have only the optical data for n and
k within some frequency region measured with some errors,
this leads to significantly larger error for Re ���� than for
Im ����. Then it seems difficult to compute the values of
��i	� with sufficiently high precision using Eq. �8�. It should
be realized also that Eq. �8� is derived under the assumption
that ���� is regular or has a first-order pole at �=0. Thus,
this equation a priori favors the Drude model which, as ar-
gued above, is experimentally excluded. Further investiga-
tions are needed to determine whether this elegant method
can be used for the comparison of experiment with theory.

V. GENERALIZED PLASMALIKE MODEL

We continue with a discussion of the comparison between
the experimental data21,22 and the theoretical predictions
from using the Lifshitz formula at zero temperature. Now we
combine this formula with the dielectric permittivity of the
generalized plasmalike model which disregards dissipation
properties of conduction electrons but takes full account of
the interband transitions of core electrons.2,3,22,38 The gener-
alized plasmalike permittivity is given by Eq. �10� with �
=0. Along the imaginary frequency axis it is presented in the
form

��i	� = 1 +
�p

2

	2 + �
j=1

6
gj

� j
2 + 	2 + � j	

. �11�

Numerical computations of the Casimir pressure were per-
formed by the substitution of Eq. �11� into Eqs. �1� and �2�
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with �p=8.9 eV, as was determined.21,22 The obtained dif-
ferences between the theoretical and mean experimental Ca-
simir pressures are plotted as dots in Fig. 5. In the same
figure, the borders of a 95% and 70% confidence intervals
form the solid and dashed lines, respectively. As can be seen
in Fig. 5, all dots lie inside both confidence intervals. This
means that the zero-temperature Lifshitz theory combined
with the generalized plasmalike model with the most often
used value for the plasma frequency is consistent with the
experimental data.21,22 The same data were found to be
consistent21,22 with the theoretical prediction using Eq. �11�
and the Lifshitz formula at the laboratory temperature �T
=300 K� where the measurements of the Casimir pressure
were performed. This is explained by the fact that at separa-
tions below 1 �m the plasmalike dielectric permittivity �Eq.
�11�� leads to negligibly small thermal corrections which are
far below the total experimental error of force measurements.
The situation differs radically when the optical data are ex-
trapolated to low frequencies by means of the Drude model
�4� or the analytical Drude-type dielectric permittivity �Eq.
�10�� is used. For such cases a large thermal correction arises
far exceeding the experimental errors.21,22 This allowed to
experimentally exclude2,3 all theoretical approaches related
to the Drude model with either most often used or other
suggested parameters at a confidence level of 99.9%.

Now we compare the experimental data21,22 with the pre-
dictions from the Lifshitz formula at zero temperature com-
bined with the generalized plasmalike model when other
suggested values for the plasma frequency are used. We have
performed computations of the Casimir pressure by using
Eqs. �1�, �2�, and �11� with the largest suggested mean
plasma frequency �p=8.38 eV found36 �see Sec. III�. The

computational results for Ptheor�a�− P̄expt�a� are indicated as
dots in Fig. 6 within the separation regions �a� from 160 to
750 nm and �b� from 350 to 750 nm. The solid lines indicate

the borders of the 95% confidence intervals. For the com-
parison purposes, the dashed lines in Fig. 6�b� show the bor-
ders of the 70% confidence intervals. As can be seen in Fig.
6, the experimental data exclude the theoretical prediction
from the zero-temperature Lifshitz formula with the value of
�p

�5� at a 95% confidence level within the range of separa-
tions from 160 to 370 nm. From Fig. 6�b�, it follows also that
at a 70% confidence level the same theoretical predictions
are excluded over a wider separation region from 160 to 480
nm. It must be emphasized that for all other suggested
plasma frequencies from 6.82 to 8.38 eV considered36 the
magnitudes of computed theoretical Casimir pressures,
Ptheor�a�, are less than for �p

�5�=8.38 eV. As a result, these
theoretical predictions are experimentally excluded at a 95%
confidence level over a wider separation region than in Fig.
6. The values of the plasma frequency from 8.38 eV to ap-
proximately 8.44 eV are also excluded at a 95% confidence
level over a bit more narrow separation region than in Fig. 6.
As to the values of the plasma frequency from 8.45 to 8.65
eV, they are excluded by the experimental data21,22 at a 70%
confidence level over different regions of separations.
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FIG. 5. Differences between theoretical and mean experimental
Casimir pressures are indicated as dots. Computations are per-
formed employing the Lifshitz formula at T=0 and the generalized
plasmalike dielectric permittivity with the most often used value of
the plasma frequency. Solid and dashed lines indicate the borders of
95% and 70% confidence intervals, respectively.
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FIG. 6. Differences between theoretical and mean experimental
Casimir pressures are indicated as dots. Computations are per-
formed using the Lifshitz formula at T=0 and the generalized plas-
malike dielectric permittivity with the largest of other suggested
plasma frequencies for separations �a� from 160 to 750 nm and �b�
from 350 to 750 nm. Solid and dashed lines indicate the borders of
95% and 70% confidence intervals, respectively.
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VI. CONCLUSIONS AND DISCUSSION

In the foregoing we have compared the experimental data
of the experiment on an indirect dynamic measurement of
the Casimir pressure between two parallel Au plates21,22 with
the predictions of the zero-temperature Lifshitz theory com-
puted employing the optical data extrapolated to zero fre-
quency by the Drude model with both most often used or
other suggested Drude parameters. We have also performed
the comparison of the same data with the computational re-
sults obtained with the help of the zero-temperature Lifshitz
formula combined with the generalized plasmalike dielectric
permittivity with either most often used or other values of
the plasma frequency.

The main conclusion obtained from these comparisons is
that the zero-temperature Lifshitz theory combined with the
Drude model is excluded by the experimental data for the
Casimir pressure at short separations below 1 �m. In the
case when the optical data are extrapolated to low frequen-
cies by means of the Drude model with most often used
parameters, the exclusion occurs at a 70% confidence level.
If the extrapolation uses other suggested parameters of the
Drude model, the zero-temperature Lifshitz theory is ex-
cluded by the data at a 95% confidence level. The theoretical
predictions from the zero-temperature Lifshitz formula com-
bined with the generalized plasmalike dielectric permittivity
with the most often used value of the plasma frequency are
shown to be experimentally consistent. The same theoretical
approach but with other suggested values for the plasma fre-
quency is excluded at a 95% confidence level. Keeping in
mind that the experimental data for the Casimir force and
Casimir pressure in previous experiments were obtained at
room temperature T=300 K and that the Lifshitz formula at
zero temperature but with room-temperature Drude param-
eters has no clear physical meaning, conclusion is made that
it is more consistent to compare all such kind of data with
the Lifshitz theory at nonzero temperature.

The disagreement of the experimental data21,22 with
theory involving the Drude model with other suggested
parameters36,42 at both zero and nonzero temperature �for the
latter case it was demonstrated in Refs. 2, 3, and 51� raises
several important questions. The dielectric response of con-
ductors on real electromagnetic field of sufficiently low fre-
quencies is described beyond any reasonable doubt by the
Drude model. However, substitution of this model with both
most often used and other suggested sets of Drude param-
eters in the Lifshitz formula for the Casimir force at any
temperature �zero or nonzero� results in contradictions with
the experimental data. This suggests that there might be
some deep unclarified differences between fluctuating elec-
tromagnetic field considered in the Lifshitz theory and real
electromagnetic field.27 Measurements of the optical
properties36 with different Au films deposited on different
substrates unequivocally demonstrated that these properties
depend on the method of preparation of the film and can vary
from sample to sample. Observed variations, however, are
mostly determined by the relaxation properties of conduction

electrons in thin films. The attempt to describe respective
optical data by the simple Drude model with a frequency-
independent relaxation parameter results in sample-to-
sample variation of both Drude parameters. However, one
should take proper account of the fact that the Casimir pres-
sures computed with the help of the Drude model with any of
the suggested Drude parameters are experimentally excluded
by the experiments20–22 while the theoretical results obtained
employing the generalized plasmalike model with the most
often used value of the plasma frequency are experimentally
consistent. Then it is natural to suggest that the dielectric
permittivity in the Lifshitz theory should not be considered
in the standard way as obtained from a response of a metal
film to a real electromagnetic field. It appears as if the di-
electric permittivity in the Lifshitz theory directly accounts
for the contribution of core electrons but treats conduction
electrons as a nondissipative plasma.

As it was mentioned in Sec. I, there are experiments of
three different types with metallic,19–22,43 semiconductor,23,24

and dielectric25,26 test bodies which cast doubts on the use of
the Drude model in the Lifshitz theory. Some complicated
issues related to all experiments on measuring the Casimir
force were discussed in Sec. II. Keeping in mind that experi-
ments on measuring very small forces and separations are
rather complicated, it would be of much interest to have
additional independent confirmation of the obtained results.
Such kind of experiments can be proposed. For this purpose,
one should use two micromachined oscillators with the same
Au-coated spheres, as in Refs. 20–22 and 43 but with Au
coatings on the plates made as suggested in Ref. 36. In one
oscillator, the plate should be coated with Au following the
deposition procedure36 used for the sample N1 ��p

�1�

=6.82 eV and ��1�=40.5 meV�. For the second oscillator,
the Au coating on the plate should be performed36 as for the
sample N5 ��p

�5�=8.38 eV and ��5�=37.1 meV�. In fact it
would be sufficient that the characteristic sizes of grains in
Au coatings on the two plates be markedly different.36 In this
case, it is easily seen that the respective difference in the
Casimir pressures computed for the two oscillators using the
Drude model with such different parameters is several times
larger than the total experimental error of pressure measure-
ments within a wide region of separations. If the mean Ca-
simir pressures measured with two oscillators would be dif-
ferent, it would demonstrate the role of relaxation of
conduction electrons. If, however, in both cases the same
Casimir pressures are obtained, it would confirm that relax-
ation properties of conduction electrons do not influence the
Casimir effect and should be disregarded. To perform the
suggested experiment, the measurement scheme of a differ-
ence type can be used.52,53 In this case two halves of the plate
of an oscillator are made using different deposition proce-
dures �one half is covered with Au coating consisting of large
grains and another half of small grains�. When such a pat-
terned plate moves back and forth below the sphere, the mea-
sured difference Casimir force would be nonvanishing �van-
ishing� depending on the role of relaxation of free charge
carriers. Thus, the result of this experiment can give the ul-
timate answer to the question whether the relaxation proper-
ties of conduction electrons influence the Casimir force.
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